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Enumeration of self-avoiding trails on a square lattice using a 
transfer matrix technique 

A R Cnnwayt and A J Guttmannts 
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$ Depatfment of lleoretical Physics, Oxford Univeaily. 1 Keble Road. Oxford 
0x1 3 i q  UK 
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AbsImcL We describe a new algebraic technique, utilizing transfer matrices, for 
mumelating self-avoiding lattice trails on the square lattice. We have enumerated Lrails 10 
31 steps, and find increased evidence that trails are in the self-avoiding walk universality 
class. Assuming that trails behave lib A A " ~ Z ~ ~ / ~ * ,  we find X = 2.72062 i O.WO006 
and A = 1.272 zt  0.002. 

1. Aistory 

Over the years, the study of the trails problem has provided an interesting 
counterpoint to the corresponding SAW problem. While self-avoiding walks are 
connected open non-intersecting paths on a lattice, and hence no site or bond may 
be visited more than once, lattice trails are open paths on a lattice which may re- 
visit sites, but not bonds. Thus SAWS are a proper subset of trails. First seriously 
studied by Malakis [l], a number of exact and numerical results were obtained by 
Guttmann [Z, 31. 

It has been shown by Hammersley [4] that SAWS have a connective constant: 
that is some d u e  p such that if there are c, SAWS of length n, then logp = 
lim,,,log(c,)/n exists and is finite and non-zero. Later, Hammersley and 
Welsh [I51 proved that c,, = p" exp(o(J;;)). 

These results were carried over to trails by Guttmann [2]. If t ,  is the 
number of trails of length n, and X denotes the connective constant for trails 
then c, < t ,  and fi  < A. It was also shown [2] that the critical behaviour 
is in the SAW universality class for trails on the honeycomb lattice, though no 
such proof has been found for the square lattice case. The earlier series were 
found to be rather poorly converged compared to SAW series of similar length, 
with the exponent of the trails generating hmction being y NY 1.40, compared to 
the SAW result y = $ = 1.34375. The connective mnstant was estimated as 
X = 2.7215 & 0.002. This poor convergence prompted Guttmann and Osborn [SI 
to any  out a Monte Carlo study, using the BerrettiSokal [6] algorithm, using walks 
up to ux) steps. They found y = 2.7205 * 0.0016 and y = 1.3485 0.11. A biased 
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estimate of the connective constant, assuming y = 1.34375, gave the critical point 
estimate X = 2.72059 f O.OOO8. Recently Lim and Meirovitch [7] used an entirely 
different Monte Carlo algorithm, the scanning simulation method. They obtained the 
estimates X = 2.72058 i 0.OOO U) and y = 1.350 f 0.012. 

In this work we report a substantial extension of the series expansion of the 
generating function for square lattice trails. The finite-lattice method plus transfer 
matrices described here allows 31 terms to be obtained on a work station (an IBM 
6000/530 with 2S6MB of memory). The method is described below. The complexity 
of our algorithm is in fact worse than exponential, compared to A" required by 
a conventional enumeration algorithm, where n is the maximum number of steps. 
However for intermediate values of length, say SC-100 steps, it is in fact substantially 
faster. The detailed performance is discussed in section 27. 

A R Conway and A J Gutmann 

2. Algorithm 

The algorithm for enumerating self-avoiding trails is very similar to the algorithm 
for enumerating self-avoiding walks described in 181. We will summarize this 
process, expanding and pointing out the differences between walks and trails where 
appropriate. Where there is no difference, the word paths is used to denote either 
walks or trails. 

21. Introduction 

The basis of this method is the transfer matrix technique on a finite lattice. This 
enables one to count the total number of paths on a square lattice (or other type of 
lattice, with the appropriate modifications). We shall firstly discuss paths that can fit 
into a finite lattice. 

The fundamental problem with enumerating self-avoiding paths is that the self- 
avoiding constraint is non-local. One cannot just say, for instance There are z 
number of ways of getting from (0,O) to ( a , b )  and y number of ways to get from 
(a,b) to (c,d),  so there must then be zyways to get from (0,O) to (c,d).' However, 
if we could do something like this, it could save a great deal of time, since zy is 
typically much larger than I + y-that is, it is faster to count I steps followed by y 
steps than it is to count x y  steps. 

0 0 0 0  

0 

0 

Figure 1. Two a m p i e s  OF a panial path, each with a Luundary (venical line) and lhe 
Same taundaly mndilions. 
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If one draws a boundary line through the (finite) lattice, one notices that the 
self-avoiding constraint works independently on both sides. This means that it would 
be possible to work out, for all the possible boundary conditions, how many patterns 
to the left and right of the boundary there are that give those boundary conditions. 
A boundary condition is the set of bonds Cut by the boundary line, plus a description 
of their interconnectedness. Thus, one can consider the two partial paths given in 
figure 1 as behaving in exactly the Same manner, if all further growth takes place on 
the right of the boundary. The number of partial paths to the left and right with a 
given boundary can then be multiplied and summed over all boundaries to give the 
required number of paths. 

Note that we usually do not want the total number of paths on a certain sized 
lattice, but rather the number of paths of a certain length on that lattice. 

lb cope with this, instead of just munting the number of partial paths to either 
side of the boundary, one can count the number of partial paths of n steps, gn, and 
then make a generating function G(r) = Cr=P=Ugnzn. Then, when one multiplies 
the generating functions for either side of the boundary, one ends up with a total 
generating function, from which the number of paths of the appropriate length can 
be easily extracted. 

Figure 2 Two boundaries differing by only one site. 

However, this leaves the tasks of actually counting those paths, and of matching 
them up. This task can be simplified by noticing that we could add in a second 
boundary (figure 2) separating just a single site. 

Now, we have three independent areas. The matching process is however not 
much more complicated. First, one works out the generating functions for all possible 
boundary conditions on the left. Secondly, for each of the boundary conditions on 
the left, one works out which new paths can be created by adding this new point. 
Wis will create zero or more possible new paths to the left of the second line, with 
perhaps different generating functions. When two or more different ‘first boundary’ 
conditions create the Same ‘second boundary’ condition, the generating functions 
should be added. An example of the new boundaly conditions created is shown in 
figure 3. 

This process can be represented as matrix multiplication. We start off with a 
column vector of generating functions, where each element corresponds to a particular 
(first) boundary condition. We then perform a linear transformation of this column 
vector to another column vector containing a generating function for each (second) 
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Figure 5. The two new partial paths resulting h m  moving the active boundary acmss 
one site. A third posibilily is not to add any bonds and have two floating partial paths 
instead of one Anating partial path and two mnnected path ends 

boundary condition. This is the same as multiplying on the left by a rectangular 
matrix. This is the reason for the name ‘transfer matrix technique’. Note that the 
column matrices are very long, so this rectangular matrix will be exceedingly large. 
However, there is no need to store this matrix as the matrix is very sparse, and 
elements can be calculated on demand. 

This process can add one extra point. But there is no reason that this process 
can not be continued to add a second point.. .or a third.. .or the rest of the lattice, 
one site at a time. Once the end of the lattice is reached, the boundary conditions 
are very simple to match: nothing is allowed to cross the end of the lattice. Similarly, 
there is no reason why one cannot start at the very beginning of the lattice. One 
then begins with only one initial boundary condition-no connections, and the trivial 
generating function 1. Thus one can generate all the possible paths using only the 
transfer matrix techniques. This means one never has to explicitly count paths. This 
process is potentially significantly faster than counting paths individually. 

22 Defining bounday conditions 

The boundary specification is called a ’signature’ and is based on a series of numbers, 
one for each of the bonds crossed by the boundary line. For a lattice of width W 
bonds, there will be W + 1 (vertical line) or W + 2 (vertical line with a kink) of 
these bonds. 

Each bond crossed may be characterized by one of three possibilities. Firstly, it 
may be unoccupied, in which case it is easy to specify. Assign it the number ‘0’. 
Secondly, the bond may be occupied, and lead to a dangling end. That is, the pathlet 
mnnected to the bond ends somewhere to the left of the boundary. This is also easy 
to specify-assign it the number ‘l’. Note that these assignments are arbitrary, there 
is no inherent meaning in this code. The third possibility is that the bond is occupied, 
and is connected (via some route to the left of the boundary) to some other bond 
on the boundary. In order to fully specify this, one must somehow uniquely define 
which bond it is connected to. 

The arrangement of possible interconnections is severely limited in the self- 
avoiding walk case, as the pathlets cannot cross. This enables a very efficient encoding: 
if one labels the ‘top’ of a pathlet with a ‘2’ and the bottom with a ‘3’, then this will 
uniquely specify the way the bonds are connected. For, if there is a ‘2’ at some point 
in the signature, one can find the corresponding ‘3’ by moving down the signature 
until the next ‘3’ is found, subject to the condition that every time a ‘2’ is crossed, 
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one must ignore an extra ‘3’. So for instance, in the signature ‘232233’, the first ‘2’ 
matches the first ‘3’, whilst the second ‘2’ matches the last ’3’. A computer can then 
store each code number for each bond as two binary bits, so for W < 14 the whole 
signature fits nicely into a 32 bit binary word, which is very convenient for current 
computers. 

For self-avoiding trails, we do not have this nice restriction. Self-avoiding trails 
can cross themselves at a site, as it is only the bonds that have to avoid one another. 
This means that one cannot get away with a clever encoding of just two symbols. 
Indeed, no finite number of symbols will do for all values of W, as will be presently 
s h m .  This leaves the explicit option, where the code number for each bond specifies 
the index of the bond to which it is attached @Ius 1). The index of a bond is the 
bond’s position on the boundruy-1 up to W t 2 inclusive. The addition of one 
is to prevent mistaking a dangling end with a connection to the fust bond. This 
means each bond will have a number from 0 to W + 3 associated with it. If we 
restrict W < 12 in a computer program, then each bond fits into 4 bits, and the total 
signature is 56 bits, which is a little more clumsy to deal with, but not difficult. 

Note that the specific numbers mentioned above for restrictions on W are in no 
way restrictions on the algorithm, just on a particular programming implementation. 
We only used W = 7 anyway, due to tinite computer resources. 

Paradoxically, the ‘implicit’ coding of the self-avoiding walk boundaries is 
significantly easier for a computer program to deal with than the ‘explicit’ encoding 
for the self-avoiding trails. This is due to the fact that most operations deal with 
local changes, when adding a site. These local changes are easy to implement with 
the implicit coding. 

Note that in [SI we used a permutation of the numbering system described above 
for SAWS: we used ‘3’ as the dangling end marker, and ‘1’ and ‘2’ for the loop ends. 
We have changed notation here for consistency. 

The coding of the signatures is actually of vital importance, as the total time and 
memory requirements of the algorithm are polynomials in W times the number of 
different signatures (Wz for space, and W4 for time), as discussed in section 2.7. 

For self-avoiding walks, an upper bound on the number of different signatures is 
obvious: qWt2, as there are 4 different possibilities for each bond, and W + 2  possible 
bonds. Actually, there are significantly fewer than this since not all combinations are 
possible: one cannot have more than two floating ends (as it would be impossible 
to make them into a connected walk), and one cannot end a loop with a 3 before 
starting it with a 2 It turns out that the number of possible signatures grows like a 
polynomial in W times 3w. 

For self-avoiding trails, the situation is again worse. The number of possible 
boundary conditions can be evaluated exactly in a straight-forward manner. Let B, 
be the number of boundary conditions for a strip of width n, and L, the number 
of boundary conditions excluding ‘dangling’ paths. That is, all of the n + 2 bonds 
on a boundary condition counted in L ,  must either be unused bonds, or may be 
connected to another bond on the boundary. In [SI these were marked by a ‘3’. A 
formula for B, in terms of L ,  is easy to obtain: any boundary counted in B, may 
have no dangling ends (giving a term L”), or it may have one dangling end in any 
of n + 2 places (giving a term of (n + 2)Ln-1), or it may have two dangling ends 
giving a term of ( n  t 2)(n t l)Lm-2 Thus we have 
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Now to work on an equation for L,: the first bond may be unoccupied, giving a 
term of Ln-l, or it may be connected to one of n f 1 other bonds, giving a term of 

A R Conway and A J Guttmann 

(n + I)L,,-z, thus 

L,  = L*-1 t ( n  t 1)Ln-2. (22)  

Initial conditions are L - ,  = 1, L - ,  = 1 and L- ,  = 0. 
These are worrying equations as they grow faster than exponentially due to the 

(n t 1) Ln-2 term in equation (22). This faster than exponential growth is the reason 
why no finite set of symbols could cope with encoding the connections for all values 
of w. 

Actual values are given in table 1, along with the number s, (taken from 181) of 
possible boundary conditions for self-avoiding walks. 

'Isbk 1. Number of boundaly conditions for wails (B,) and for shws (5" ) .  Values for 
s, mme fmm [8]. 

0 2 5 5 
1 4 13 13 
2 10 29 37 
3 26 116 106 
4 76 292 312 
5 232 1310 57.5 
6 764 4748 2767 
7 z 620 17 848 8314 
8 9 4% 70076 25073 
9 35696 284252 75791 
10 140152 1195240 229495 

23. Irreducible components 
Using the transfer matrix method directly is not as much of a saving as could be 
expected, due to the very large number of vectors. If we want to count all paths up 
to a maximum length of 2n t 1, then at lkst it looks as though a square 2n +- 1 wide 
is needed to cope with a perfectly vertical path. However, it is possible to use the 
symmetry relation between the horizontal and vertical axes, so that only paths up to 
a width of n need to be calculated: for paths of width n f 1 or greater, we can say 
that they must have height n or less, and thus their mirror images will have already 
been counted. More formally, if G j j  is the number of paths with i horizontal and j 
vertical steps, then Gij = Gji and thus if we know Gij for i < 2n f 1 and j < n, 
we really know Gij  for all i + j < 2n t 1. That is, we know the total number of 
paths of length up to 2n t 1 steps. This means that we could work with strips of 
width n, length 2n t 1 and obtain coefficients up to and including 2n + 1. 

There is still a further improvement Suppose that we break up all the paths (of 
vertical steps < n = 2M t 1) into two classes, irreducible and reducible. 

Irreducible paths have no place where a horizontal line could be drawn across the 
lattice intersecting exactly one vertical bond. As there are a maximum of 2 M  + 1 
vertical bonds in the path, and there must be at least two vertical bonds for each unit 
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of width (to satisfy the irreducibility definition), these paths must all fit into a strip 
of width M bonds. 

Reducible paths have at least one place where the horizontal line can be drawn, 
intersecting just one bond of the path. These paths have the Nce properry that the 
self-avoiding constraint will act independently both above and below this line. All 
that is needed is to calculate the number of self-avoiding paths above and below 
independently. This is a smaller problem, and indeed, can be further split up, until 
the entire path can be considered to be made up of an irreducible ’top’ section, 
then one or more sections composed of a vertical bond and an irreducible ‘middle’ 
section, then finally a vertical bond and an irreducible ‘bottom’ section. As all of 
these irreducible subsections will have fewer than n steps, they will fit into a strip of 
width M. 

All in all, these two optimizations allow calculations on a strip of width M bonds 
to provide the number of paths with widths up to n = 2M + 1 and thus paths with 
total number of bonds up to 2 n + l =  46f+3. Since the number of partial generating 
functions rises exponentially with strip width, these two optimizations reduce the 
complexity of the problem enormously. 

However, it makes the counting task a little more difficult: we have to extract these 
‘top’, ‘middle’ and ‘bottom’ sections individually. TO facilitate this, the irreducible 
paths can be named as described in table 2, based upon their starting and end points. 
Note that a distinction is made here between paths and routes. A p t h  has a specific 
starting pint:  a route does not. This means that there are exactly half as many routes 

Note that mutes with two bottom ends are not included, as they are the same (in 
number and shape) as R, and similarly routes with one bottom end and one middle 
end are not given a name as they are covered by S. Note that all the routes above 
are irreducible. 

The name in this table is the name of the generating functions associated with 
that variable in this paper. There are six generating functions associated with each 
letter in this paper, as per the following pattern: 

0 Q(u ,w)  is the generating function for irreducible routes of the required shape 
with the power of U giving the number of horizontal bonds, and w representing 
vertical bonds. 
QW(u,w)  is the same, except only for those irreducible routes of width exactly 
W .  
Q*(u, w )  is the generating function for all (i.e. both reducible and irreducible) 
mutes of the required shape. 
&tV(u,w) is the same, except for all mutes with width exactly W’. 
Q(u,  w,z) is the generating function for irreducible mutes of the required shape 
with the power of U giving the number of horizontal bonds, w representing vertical 
bonds, and z the total width. 
& ‘ ( U ,  w, z )  is the generating function for all routes of the required shape with 
the power of U giving the number of horizontal bonds, w representing vertical 
bonds, and z the total width. 

as paths. 

Note that the same terminology applies to variables other than Q, with mutes 
changed to paths where appropriate. The three variable generating function is 
the most general: the width W generating functions can be extracted from the 
appropriate p w e r  of z ,  and the generating functions in two variables can be produced 
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TEbk 2 Irreducible paths described by heir staning and end p i n k  

Dercrption Picture Name Lowest power in U* 

for width M 

Path with no venial bonds o--o--o P NIA 

Route with two middle ends WJ2M 

Route with two lop ends WZM 

Route with one top. one middle end wZM+l  

Route with one lop, one bottom end WSM 

from the functions in three variables by setting z = 1. That is 

Note that if a path is on a strip the width of which is too small for the definition 
to make sense, then the corresponding generating function is zero: Le. Q,, Q,, R,, 
S,, S,, and T, are all zero. 

Of these five functions, P is easy to determine. .There is one horizontal path of 
length zero, and two paths of every other length (one in each direction). Thus 

1 t u  
1 - U  

P ( ~ , ~ , ~ )  = 1 + 2u t 2 d  +2u3 + ... = -. 
Now define another variable, X. This will represent the total number of 

irreducible middle sections. That is, the number of ways of going from a point at the 
bottom of an irreducible section to a point on the top. Note that every element of 
T can be considered as a path restricted so as to not go below the startingpoht. Thus, 
T copes with all the parts of X of width at least one. For the zero width case, we 
just want paths from one point on a line to another point P, thus 

X = T + P .  
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This is the reason for defining P to be paths, whilst &, R, S, and T are routes. 
This is a typical X 

and this is the corresponding WZX 

X refers to just a single irreducible middle section. This can be extended to an 
arbitrary middle section by noting that a ‘middle section’ can be formed from either 
a vertical bond (wz), or two vertical bonds with an X in between, ( W Z X W Z ) ,  or 
any number of extra W Z X  terms. Define a new variable I’ to be a total (reducible) 
‘middle section’, then 

(23) 
W Z  v = wz (1 + W Z X +  ( W Z X ) Z +  ( W Z X ) 3 + .  ..) = - 

A V can be considered to be a generalization of a vertical bond: it is a reducible 
path without either the top or bottom irreducible components. A typical element Of 
V is shown below. The arrows indicate that the V is intended to be used as part Of 
a path, not as something in its own right. 

Note that the top and bottom of a V are always vertical bonds, so a V can attach 
to my irreducible component which has an end at its top or bottom. This can be a 
P, an R, an S or a T. Note that the R has two ends to which connections can be 
made, so we must count it twice. P is not counted twice since it is a path, not a 
route. Define the generating function of end components, E as 

E = P+2R+ S+ T. 

Now all the reducible routes can be calculated. Each consists of one end piece, 
E, a joint V and another end piece E. Thus reducible routes are EVE. Irreducible 
routes (with some vertical component, Le. not P) are & + 2R + 2 s  + T. R and S 
are counted twice to allow for routes with two bottom ends or one bottom and one 
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middle end respectively. 'RI get the total number of paths then, we take the number 
of paths with no vertical component, P, and add in twice the number of routes with 
vertical components. This gives 

A R Conway and A J Guttmann 

C = P +  2(Q t 2 R  + 25  + T t  E V E )  

as the total number of paths. 
This is a typical reducible path, made up from a TI'P 

where the V in this m e  is wzPwzTwz. 

24. Obtaining the irreducible componenrJ 

So far only P(u,w,r) is hown In order to calculate the number of self-avoiding 
paths up to length 4M+3, Q(u ,w) ,  R(u,w),  S ( U , W )  and T(u,w) must be lmown 
accurate to u4Mt3 and to wZMtl.  

Suppose that it were possible to obtain the starred polynomials Q', R', Sa and 
T' as functions of three variables. Then R = R', as all paths starting from the top 
and ending at the top are irreducible. 

Calculating the others is a little more dimcult. Consider the generalization of X 
to X'.  X' will be equal to the sum of the irreducible parts X ,  plus reducible paths 
starting at the bottom and ending at the top. These are expressible as X V X ,  so we 
have X' = X + X V X .  Using equation (2.3), this can be inverted to give 

X' 
1 + WZX' X =  

which can be expanded in a formal binomial series to give 

x = X' (1 - WZX' t WZZZX'~ - . , .) . 

If X" is hown to some order in U and w for powers up to r M ,  then X can be 
determined to the same order. Since X is made up of P (which is zero for widths 
other than O), and T, which has the lowest power of w being three times the power 
of z ,  order is preserved up to w3M+2 and to the original order in U. Thus, if X u  is 
hown to u ~ ~ + ~  and d'+*, this is preserved in the calculation of X .  So, by using 
the third variable, one can go from X' to X ,  and thence T. Without using the third 
variable z, the generating function X' would only be correct to terms of order w M  
rather than wZMt1. 
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Similarly, if we define Y = 2R+ S (connections at the bottom, but not the top), 
then Y' = 2R* t S' = 2R + S + XVY = Y( 1 + XV), so there is an expression 
for Y similar to equation (2.4) 

Y' 
1 + XV' Y =  

One can then obtain Y and thence S from Y' and hence S', in a manner similar 
to that used to obtain T from T' via X and X'. 

Lastly, Q' = Q + YVY so 
Q = Q* -YVY 

and Q can also be obtained in a similar manner. 

components given the full three variable information, and accuracy to 

2 M + l i n W  
4 M + 3 i n u .  

2.5. Obtaining reducible components 

Suppose that we could count all the paths on a certain finite lattice with constraints 
upon where the paths can start or end. Define the generating function in variables 
U to order 4M + 3 and w to order 2M + 1 for paths on a strip of width h' as 
GK(a ,  b, c) ,  where a, b, and c are + or - depending upon whether one can start or 
end paths on the top of the strip, the bottom of the strip, and/or the middle of the 
strip respectively. Ensure that all paths included in these generating functions start 
flush at the left of the lattice so that we do not need to worry about uniqueness in 
the horizontal direction. 

Now, by considering how the walks that fit into the strip can be made 
up of the reducible functions defined above, the latter can be defined as an 
invertible linear combination of the former, One inverts this relation and gets the 
reducible components needed in section 2.4 from the G K ( + , - , - ) ,  G,(+,+,-), 
GK(-,-,+) and G,(+,-,+), for K from 0 to M. 

This means that all the irreducible components can be obtained from reducible 

M in z (i.e. to width M) 

These relations are (as taken from [SI) 

R, = Gm(+,-,-) - G,,-I(+~-,-) 

Q',=G,(-,-,+)-G,-,(+,-,+)- x ( Q ' , + R , + S L )  

Sk = G,(+,-,+)- Gm-~(+,-,+)-Gm(+,-,-)-Gm-i(+,-,-)  
m-l 

m-1 

n=l  

1 - ~ ( p - 1 )  - Q', - (Wn + I *  S: t 7'') 
n=l  

TA = G , ( + , t , - )  - 2Gm(+,-,-). 
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26. Countingpalhs on strips 

The transfer matrix technique can be used to obtain the generating functions G, 
that are needed in section 2.5. 

Suppose we are working on a lattice of width W and length 4Wt3.  As mentioned 
before, one starts with one partial generating function (boundary to the left of the 
entire lattice, no bonds used, generating function 1). Then add on sites as described 
in the next paragraph one at a time, working along the matrix column by column. 
At each site one stores for each valid signature the partial generating function. After 
processing the first column, one can remove the signature with no bonds occupied, as 
any animal based upon this signature will not lie flush against the left of the lattice, 
and by removing it we satisfy the horizontal uniqueness criterion. 

'RI process a site, one cycles through all the stored signatures, processing each 
individually, creating a new set of signatures. Note that two or more signatures 
may produce the same signature after processing. In this case the partial generating 
functions for these two signatures should be added. 

All that is left is to describe exactly what to do when each site is added for a 
particular signature. The site that is being added will have two bonds coming in (to 
the left of the new boundary), and another hvo bonds leaving (to the right). 

One must lirstly see if the walk can be finished at this point, and if so, add in 
the partial generating function to a total generating function which will give the final 
G, once all sites have been processed. In order to be able to accumulate a partial 
walk, two conditions must be satisfied. Firstly, there must be no occupied bonds in 
the signature other than those coming into the bond being processed. Secondly, one 
of the three following conditions must hold 

There must be a single dangling end coming in to the site being processed (type 
'1' in the signature coding), and it is valid to start or stop a path at this point 
(determined by the + or - parameters in the particular G, being computed. 
Or there may be two dangling ends that connect at this site. 
Or (only in the case of trails) there may be a loop completed at this site and it is 
valid to start or stop a path at this point. 

We will first discuss the possibilities for the new signatures if one cannot Start or 
stop a path at the site being processed. 

If one is counting walks, and there is only one bond going into the site, then 
that one bond must emerge from either of the two bonds coming out of the site. 
This gives two new signatures, one with the old generating function multiplied by 
w (emerging vertically), and one with the old generating function multiplied by U 

(emerging horizontally). In future we will not mention these multiplications. 
Again for walks, one may have both bonds entering the site occupied. In this case 

neither output bond may be occupied, as one cannot have more than two occupied 
bonds touching a site for self-avoiding walks. What happens depends upon the 
specific case. If the two bonds are attached together, then a loop has been formed 
which is illegal, so no signatures are generated. If the two bonds are dangling ends, 
then attaching them would make an entire dangling path, which is not allowed. In 
the remaining cases, one does produce a new valid signature, and one must adjust 
the coding for the bond@) in the signature to which the just processed bonds were 
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attached. 
Again for walks, if there are no bonds coming in, then there are two possibilities: 
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no bonds coming out, or a new path being started at this point-that is two bonds 
coming out and connected to each other. 

Further possibilities exist if one can stop or start from the site being processed. 
For walks with no bonds coming in, one can now have one dangling end coming 

out of either of the two outgoing bonds. With one bond coming in which is not a 
dangling bond, the pathlet it belongs to can be terminated at this site, and the bond 
to which it is attached elsewhere in the signature becomes a dangling bond. Note 
that each of these steps increases the number of dangling bonds in the signature, and 
one must check that the total number of dangling bonds does not exceed two, as this 
would mean that any path one tries to construct must have at least three ends! 

These are summarized in table 2 of 181. 
For trails, the situation is significantly more complicated, as bond loops and 

First, consider what can be done without starting or stopping. 
The same possibilities as in the walks case (without stopping or starting at the 

site being processed) hold, with some extra possibilities when there are two bonds 
coming in. Firstly, both bonds could ‘bounce’ and come out as two bonds with the 
same connections. Secondly, they could cross, and come out as two bonds with 
interchanged connections. Thirdly, if the two bonds coming in meet, and in the 
walks case would have produced no bonds coming out, one may also have two new 
WMected bonds coming out, as occurred in the walks case when no bonds went in. 

If one is allowed to start or stop at the site being processed, things get much 
more complicated. The actions can best be described by two stages. 

In the first stage, associated with terminating incoming pathlets, one forms all the 
possibilities already described, and adds in the following possibilities: 

e For one bond entering which is not an dangling end, the pathlet may be terminated 
at this site, and the other end of the pathlet converted to a dangling end (as was 
done for walks). No occupied bonds emerge. 

e For two bonds entering, one a dangling end, and the other a pathlet, the pathlet 
may terminate (making the other end of the pathlet a dangling bond) and the 
dangling end can continue from either of the two new bonds. 
For two ends of the same pathlet entering, one end may terminate at the current 
site, and the other end (now a dangling end) may take either of the two new 
bonds. As either end of the pathlet may terminate, there are four new signatures 
produced. 
For two ends of different pathlets entering, there are the same four possibilities 
as above, except that this time it is a pathlet leaving, not a dangling end, and 
some other bond in the signature will become a dangling end. A iifth possibility is 
for both incoming pathlets to terminate, producing two dangling ends elsewhere 
in the signature and no bonds coming out. 

In the first and last case above, there is the possibility of no bonds coming out. Again, 
one can add a new two bond loop in both cases as in the walks case when no bonds 
went in. 

The second stage is associated with adding dangling ends at the leaving stage. If 
any of the signatures formed from the first stage have either or both of the outgoing 
bonds unoccupied, either or both may be filled with dangling ends. 

Of course, when forming new dangling ends, one must remember the constraint 
that the total number of dangling ends in the signature may not exceed two. 

crossings are allowed, but the basic idea remains the same. 
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2% Algonihm compleriy 

One now has all the ingredients for the algorithm. One uses the transfer matrix 
technique to get all the G, terms for K going up to some value U' (section 26), then 
obtain the reducible generating functions (section 25) and thus obtain the irreducible 
generating functions and final answer (section 24). 

Of these three stages, the fmt (section 26) is exceedingly time and memory 
consuming, whilst the second (section 2 4 5 )  is fast (polynomial in W time) and uses 
little memory. 

Since the first stage is the bottleneck, we shall discuss it exclusively in terms of 
complexity. 

The total memory required will be bounded by the number of possible boundary 
conditions, multiplied by the total space per generating function (proportional to 
W'), multiplied by two, since one may need to store both the incoming and outgoing 
partial generating function. In practice, this last factor is nowhere near as high as 
two, since as soon as a signature has been fully processed, the data associated with it 
may be discarded. 

The total time required is proportional to the total amount of memory that needs 
to be processed (as above) times the number of sites that have to be processed 
(proportional to Wz), times the average number of new signatures per old signature. 
This last factor is pretty much independent of W. For trails it is significantly larger 
than walks. 

The basic result is that the time and memory requirements are a small polynomial 
times the number of boundary conditions. The number of boundary conditions is 
therefore the most significant factor in the complexity of this algorithm. 

For self-avoiding walks, the number of boundary mnditions grows like a 
polynomial in W times 3". Thus the dominant complexity of this method for 
self-avoiding walks is 3"14, where n is the number of steps required. This coma 
from the fact that n = 4 W  + 3. The alternative, direct enumeration, grows like An, 
where X is the connective constant for self-avoiding walks. Note that X is significantly 
greater than 3'i4 (approximately twice 3Il4 in fact), so this algorithm is exponentially 
faster than direct enumeration. 

For trails, the situation is not as good. The analysis in section 2.2 shows that the 
number of boundary conditions grows faster than exponentially. Thus, for very long 
trails, direct enumeration will be a more efficient algorithm! However, consulting 
table 1 shows that Wails are not all that much worse than walks for small values of 
W.  So for smaU values of U', this transfer matrix method is actually more efficient 
than direct enumeration. Fortunately, the values of W for which this algorithm is 
faster than directed enumeration are such that this algorithm is faster for n at least 
50, which is far beyond the capacity of current computers. 

This algorithm is also amenable to parallelization in the Same manner as the 
self-avoiding walk algorithm described in [SI. 

This algorithm was implemented in a C program using modular arithmetic, and 
was used to obtain trails of up to 31 steps. They are given in table 3. 

3. Analysis of series 

The method of analysis used is based on first- and second-order differential 
approximants. It was used in previous papers [8,9,10] in which the related SAW 
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Tpbk 3. Numbers of mils t, of n steps. 

n 
0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

- t ,  
1 
4 
12 
36 
108 
316 
916 

2 628 
I500 
21 268 

n 
10 
11 
12 
I3 
14 
15 
16 
17 
18 
19 
20 

- t ,  
60092 
169 092 
474 924 

1 329 188 
3115244 
10 359 616 
28 856 252 

222 841 804 
618 083 9l2 

1713 283 628 

a0220244 

R - 
21 
22 
23 
24 
2.5 
26 
21 
28 29 

30 
31 

tn 

4742946484 
13123882524 
36214940140 
tw 226 653 420 
276669052116 
763 482 430 316 

2105208491 748 

15986 580 203469 
44 028 855 864 492 

5ao3 285 97724 

121 181 822 490 084 

problem was studied, and is described in detail in [Ill.  In summary, we construct 
neardiagonal inhomogeneous differential approximants, with the degree of the 
inhomogeneous polynomial increasing from one to eight in steps of one. For Iirst- 
order approximants ( IC = I), twelve approximants are constructed that utilize a 
given number of series coefficients, N .  Rejecting occasional defective approximants, 
we form the mean of the estimates of the critical point and critical exponent for fixed 
order of the series, N .  The error is assumed to be kvo standard deviations. A simple 
statistical procedure combines the estimates for different values of N by weighting 
them according to the error, with the estimate with the smallest error having the 
greatest weight. As the error tends to decrease with the number of terms used in the 
approximant, this procedure effectively weights approximants derived from a larger 
number of terms more heavily. 

For second-order approximants (IC = 2), eight distinct approximants are 
mnsmcted for each value of N .  We find that as the number of series terms 
increases, the estimate of the critical exponent decreases. We show below that this is 
due to rather strong correction-toscaling terms, much stronger than for the SAW case. 
Because of this, the estimates we quote below should be treated as over-estimates of 
the exponent and critical point 

z, = 0.367597 i 0.00002 y = 1.352 & 0.01 (Ji = 1) 
z, = 0.3676 & O.ooO1 = 1.348 f 0.008 (IC = 2). 

These results provide some support for the view that the trails are in the SAW 
universality class. The critical p int  estimate can be refined if we assume that 
y = 1.34375 exactly, which is the SAW value. 'Ib refine the estimate of the critical 
point, linear regression is used. There is a strong correlation between estimates of 
the critical point and critical exponent. This is quantified by linear regression, and in 
this way the biased estimates (biased at y = 43/32) are obtained. 

We find 

x, = 0.367564fO.C"S 

zc = 0.367562 f 0.000007 

(A' = 1) 
(IC = 2). 

These are combined to give our best estimate for the connective constant 
X = l /xc = 2.72062 i O.ooOo6, which is in agreement with previous estimates, 
but rather more accurate than any previous estimate. 
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The much slower rate of convergence of the trails series critical point estimates 
compared to the corresponding SAW estimates is presumably due to stronger 
‘correction-to-scalig’ terms. We have investigated this possibility using three different 
methods. Firstly, we used the method of Baker and Hunter [12] which transforms 
the series so that poles of the Pad6 approximants to the transformed series furnish 
estimates of the reciprocals of the exponents. However we found that the singularity 
on the negative real axis at -zc masked the presence of any confluent singularity at 
zc. Accordingly, we split the series in two, treating the odd and even subsequences as 
independent series. In this way, we found exponents with the =lues ES 1.35 and w 1.0 
from the even sub-sequence. The smaller exponent was not well identified however. 
This implies a correction-to-scaling exponent of ES 0.35. The odd subsequence gave 
no evidence of any exponent apart from the leading one. 

The next method we used was the method of Adler et a1 [13], in which a 
correction-to-scaling exponent is assumed, and then a transformation is applied which 
maps this non-analytic correction term to an analytic correction term. Pad6 analysis 
of the transformed series should then give the correct leading exponent We tried 
various values of the correction-to-scaling exponent, and found that a value around 
0.75 resulted in a series which gave the correct critical exponent of y = 1.34375. 

The third method is the same as that used in our recent study of SAWS [SI. In that 
method we mwme the correction-to-scaling exponent, and fit the series coefficients 
to the assumed form. The fit is judged reasonable if the sequences of amplitude 
estimates appear to converge well. This is not a particularly sensitive method, but 
is useful in that it does provide amplitude estimates as well. From the two wlues 
of the correction-to-scaling exponent found above, we Wicd an intermediate value 
of 0.5. Given that the SAW exponent appears to be 1.5, this seemed a reasonable 
thing to try. As well as the correction-to-scaling term, there is another singularity 
on the negative real axis. For SAWS, Guttmann and Whittington [14] showed that 
this was at I = -zc. That proof applies mutatis mulandis to trails. We assume that 
universality of exponents applies to non-physical singularities also-a result supported 
by our series analysis. Then the singularity on the negative real axis will also have 
the same exponent as the energy at the physical singularity-as for SAws-and so we 
expect the generating function for trails to behave like 

T(r) = Ct,z“ - A ( r ) (  1-Xz) -43’32[ l+B(2) (1 -~~)~+~  , .]+D(s)( ~ + X Z ) + ” ~ .  

The exponent for the singularity on the negative real axis refiects the fact that, 
as noted above, that term is expected to behave as the energy, and hence to have 
exponent 1 - a, where a = $. From the above, it follows that the asymptotic form 
of the coefficients, e,, behaves like 

tn Xn[aln11/32 + bln”/32-A + ( - l ) n d 1 n - 3 / 2 ] .  (34 
The three amplitudes, q, b,, d,  come from the leading singularity, the correction- 

to-scaling term and the term on the negative real axis respectively. A small program 
written in Mathematica was used to fit successive triples of coefficients, c,-~, c,-, 
and cn for n = 6,7,8,. . . ,31. The results (with A = 4) are shown in table 4. 

At first sight, these appear to be converging rather well. Closer inspection reveals 
that the sequences have a turning point at around n = 29. We next tried a higher 
value of A, choosing A = 0.75 in agreement with the prediction of the transformation 
method of Adler el al cited above. The results are shown in table 5. 
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Tabk 4. Sequences of amplitude estimates assuming A = 1.. Refer to equation (3.1). 

n 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

- di 
0.0289 
0.0309 

0.0311 

- 

a0296 

amo6 
0.0313 
0.0310 
0.0314 
0.0315 
0.0316 
0.0319 

b t  a1 

-0.18M 1.2795 
-0.1833 1.2801 
-0.1849 1.2805 
-0.1868 1.2809 

-0.1885 1.2812 
-ai874 1.2810 

-ai889 1.2813 
-ai894 1.2814 
-ai893 1.2814 
-ai894 1.2814 
-0.1890 1.2813 

Tabk 5. Sequences of amplitude estimates assuming A = $. Refer to equation (3.1). 

n dl  b1 a1 

21 aom - 0 . 2 5 ~  1.2661 
U 0.0316 -0.2615 1.2668 
23 a0289 -0.2670 1.2673 
24 0.0318 -0.2727 ~ 2 6 7 9  
zs 0.02~ -0.2765 1.2683 
26 0.0321 -azo9 1.2687 
27 0.0303 -0.2878 1.2690 
28 0.0321 -0.2902 1.2692 
29 0.0309 -0.2902 13695 
30 0.0323 -0.2930 1.2697 
31 0.0313 -0.2949 1.2698 

These sequences of amplitudes appear fo be converging reasonably well, and 
support the earlier finding that the correction-to-scaling exponent is around 0.75. If 
this is correct, we can extrapolate the above sequences and find at = 1.272 & 0.002, 
b, = -0.322~0.02 and d,  = 0.035~k0.004. Even if the correction-to-scaling exponent 
were not as estimated, the leading amplitude is still likely to be within the quoted 
range. 
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