
Enumeration of self-avoiding trails on a square lattice using a transfer matrix technique

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 1535

(http://iopscience.iop.org/0305-4470/26/7/013)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 21:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 26 (1993) 1535-1552. Printed in the UK

Enumeration of self-avoiding trails on a square lattice using a
transfer matrix technique

A R Cnnwayt and A J Guttmannts
t Department d Mathematics, Tbe University d Melbourne, P a r m e 352, Auslralia
$ Depatfment of lleoretical Physics, Oxford Univeaily. 1 Keble Road. Oxford
0x1 3 i q UK

Received 75 September 1992

AbsImcL We describe a new algebraic technique, utilizing transfer matrices, for
mumelating self-avoiding lattice trails on the square lattice. We have enumerated Lrails 10
31 steps, and find increased evidence that trails are in the self-avoiding walk universality
class. Assuming that trails behave lib A A " ~ Z ~ ~ / ~ * , we find X = 2.72062 i O.WO006
and A = 1.272 zt 0.002.

1. Aistory

Over the years, the study of the trails problem has provided an interesting
counterpoint to the corresponding SAW problem. While self-avoiding walks are
connected open non-intersecting paths on a lattice, and hence no site or bond may
be visited more than once, lattice trails are open paths on a lattice which may re-
visit sites, but not bonds. Thus SAWS are a proper subset of trails. First seriously
studied by Malakis [l], a number of exact and numerical results were obtained by
Guttmann [Z, 31.

It has been shown by Hammersley [4] that SAWS have a connective constant:
that is some d u e p such that if there are c, SAWS of length n, then logp =
lim,,,log(c,)/n exists and is finite and non-zero. Later, Hammersley and
Welsh [I51 proved that c,, = p" exp(o(J;;)).

These results were carried over to trails by Guttmann [2]. If t , is the
number of trails of length n, and X denotes the connective constant for trails
then c, < t , and fi < A. It was also shown [2] that the critical behaviour
is in the SAW universality class for trails on the honeycomb lattice, though no
such proof has been found for the square lattice case. The earlier series were
found to be rather poorly converged compared to SAW series of similar length,
with the exponent of the trails generating hmction being y NY 1.40, compared to
the SAW result y = $ = 1.34375. The connective mnstant was estimated as
X = 2.7215 & 0.002. This poor convergence prompted Guttmann and Osborn [SI
to any out a Monte Carlo study, using the BerrettiSokal [6] algorithm, using walks
up to ux) steps. They found y = 2.7205 * 0.0016 and y = 1.3485 0.11. A biased

5 Permanent address: Department of Mathematics, Tne University of Melbourne, Parkville, Vlctoria,
3052, Auslralia.

OM5-4470~1071535+18507.M @ 1993 IOP Publishing U d 1535

1536

estimate of the connective constant, assuming y = 1.34375, gave the critical point
estimate X = 2.72059 f O.OOO8. Recently Lim and Meirovitch [7] used an entirely
different Monte Carlo algorithm, the scanning simulation method. They obtained the
estimates X = 2.72058 i 0.OOO U) and y = 1.350 f 0.012.

In this work we report a substantial extension of the series expansion of the
generating function for square lattice trails. The finite-lattice method plus transfer
matrices described here allows 31 terms to be obtained on a work station (an IBM
6000/530 with 2S6MB of memory). The method is described below. The complexity
of our algorithm is in fact worse than exponential, compared to A" required by
a conventional enumeration algorithm, where n is the maximum number of steps.
However for intermediate values of length, say SC-100 steps, it is in fact substantially
faster. The detailed performance is discussed in section 27.

A R Conway and A J Gutmann

2. Algorithm

The algorithm for enumerating self-avoiding trails is very similar to the algorithm
for enumerating self-avoiding walks described in 181. We will summarize this
process, expanding and pointing out the differences between walks and trails where
appropriate. Where there is no difference, the word paths is used to denote either
walks or trails.

21. Introduction

The basis of this method is the transfer matrix technique on a finite lattice. This
enables one to count the total number of paths on a square lattice (or other type of
lattice, with the appropriate modifications). We shall firstly discuss paths that can fit
into a finite lattice.

The fundamental problem with enumerating self-avoiding paths is that the self-
avoiding constraint is non-local. One cannot just say, for instance There are z
number of ways of getting from (0,O) to (a , b) and y number of ways to get from
(a,b) to (c,d), so there must then be zyways to get from (0,O) to (c,d).' However,
if we could do something like this, it could save a great deal of time, since zy is
typically much larger than I + y-that is, it is faster to count I steps followed by y
steps than it is to count x y steps.

0 0 0 0

0

0

Figure 1. Two a m p i e s OF a panial path, each with a Luundary (venical line) and lhe
Same taundaly mndilions.

Enumeration of self-avoiding trails 1537

If one draws a boundary line through the (finite) lattice, one notices that the
self-avoiding constraint works independently on both sides. This means that it would
be possible to work out, for all the possible boundary conditions, how many patterns
to the left and right of the boundary there are that give those boundary conditions.
A boundary condition is the set of bonds Cut by the boundary line, plus a description
of their interconnectedness. Thus, one can consider the two partial paths given in
figure 1 as behaving in exactly the Same manner, if all further growth takes place on
the right of the boundary. The number of partial paths to the left and right with a
given boundary can then be multiplied and summed over all boundaries to give the
required number of paths.

Note that we usually do not want the total number of paths on a certain sized
lattice, but rather the number of paths of a certain length on that lattice.

lb cope with this, instead of just munting the number of partial paths to either
side of the boundary, one can count the number of partial paths of n steps, gn, and
then make a generating function G(r) = Cr=P=Ugnzn. Then, when one multiplies
the generating functions for either side of the boundary, one ends up with a total
generating function, from which the number of paths of the appropriate length can
be easily extracted.

Figure 2 Two boundaries differing by only one site.

However, this leaves the tasks of actually counting those paths, and of matching
them up. This task can be simplified by noticing that we could add in a second
boundary (figure 2) separating just a single site.

Now, we have three independent areas. The matching process is however not
much more complicated. First, one works out the generating functions for all possible
boundary conditions on the left. Secondly, for each of the boundary conditions on
the left, one works out which new paths can be created by adding this new point.
Wis will create zero or more possible new paths to the left of the second line, with
perhaps different generating functions. When two or more different ‘first boundary’
conditions create the Same ‘second boundary’ condition, the generating functions
should be added. An example of the new boundaly conditions created is shown in
figure 3.

This process can be represented as matrix multiplication. We start off with a
column vector of generating functions, where each element corresponds to a particular
(first) boundary condition. We then perform a linear transformation of this column
vector to another column vector containing a generating function for each (second)

1538 A R Conway and A .I Gullmann

Figure 5. The two new partial paths resulting h m moving the active boundary acmss
one site. A third posibilily is not to add any bonds and have two floating partial paths
instead of one Anating partial path and two mnnected path ends

boundary condition. This is the same as multiplying on the left by a rectangular
matrix. This is the reason for the name ‘transfer matrix technique’. Note that the
column matrices are very long, so this rectangular matrix will be exceedingly large.
However, there is no need to store this matrix as the matrix is very sparse, and
elements can be calculated on demand.

This process can add one extra point. But there is no reason that this process
can not be continued to add a second point.. .or a third.. .or the rest of the lattice,
one site at a time. Once the end of the lattice is reached, the boundary conditions
are very simple to match: nothing is allowed to cross the end of the lattice. Similarly,
there is no reason why one cannot start at the very beginning of the lattice. One
then begins with only one initial boundary condition-no connections, and the trivial
generating function 1. Thus one can generate all the possible paths using only the
transfer matrix techniques. This means one never has to explicitly count paths. This
process is potentially significantly faster than counting paths individually.

22 Defining bounday conditions

The boundary specification is called a ’signature’ and is based on a series of numbers,
one for each of the bonds crossed by the boundary line. For a lattice of width W
bonds, there will be W + 1 (vertical line) or W + 2 (vertical line with a kink) of
these bonds.

Each bond crossed may be characterized by one of three possibilities. Firstly, it
may be unoccupied, in which case it is easy to specify. Assign it the number ‘0’.
Secondly, the bond may be occupied, and lead to a dangling end. That is, the pathlet
mnnected to the bond ends somewhere to the left of the boundary. This is also easy
to specify-assign it the number ‘l’. Note that these assignments are arbitrary, there
is no inherent meaning in this code. The third possibility is that the bond is occupied,
and is connected (via some route to the left of the boundary) to some other bond
on the boundary. In order to fully specify this, one must somehow uniquely define
which bond it is connected to.

The arrangement of possible interconnections is severely limited in the self-
avoiding walk case, as the pathlets cannot cross. This enables a very efficient encoding:
if one labels the ‘top’ of a pathlet with a ‘2’ and the bottom with a ‘3’, then this will
uniquely specify the way the bonds are connected. For, if there is a ‘2’ at some point
in the signature, one can find the corresponding ‘3’ by moving down the signature
until the next ‘3’ is found, subject to the condition that every time a ‘2’ is crossed,

Enumerafion of self-avoiding tmih 1539

one must ignore an extra ‘3’. So for instance, in the signature ‘232233’, the first ‘2’
matches the first ‘3’, whilst the second ‘2’ matches the last ’3’. A computer can then
store each code number for each bond as two binary bits, so for W < 14 the whole
signature fits nicely into a 32 bit binary word, which is very convenient for current
computers.

For self-avoiding trails, we do not have this nice restriction. Self-avoiding trails
can cross themselves at a site, as it is only the bonds that have to avoid one another.
This means that one cannot get away with a clever encoding of just two symbols.
Indeed, no finite number of symbols will do for all values of W, as will be presently
s h m . This leaves the explicit option, where the code number for each bond specifies
the index of the bond to which it is attached @Ius 1). The index of a bond is the
bond’s position on the boundruy-1 up to W t 2 inclusive. The addition of one
is to prevent mistaking a dangling end with a connection to the fust bond. This
means each bond will have a number from 0 to W + 3 associated with it. If we
restrict W < 12 in a computer program, then each bond fits into 4 bits, and the total
signature is 56 bits, which is a little more clumsy to deal with, but not difficult.

Note that the specific numbers mentioned above for restrictions on W are in no
way restrictions on the algorithm, just on a particular programming implementation.
We only used W = 7 anyway, due to tinite computer resources.

Paradoxically, the ‘implicit’ coding of the self-avoiding walk boundaries is
significantly easier for a computer program to deal with than the ‘explicit’ encoding
for the self-avoiding trails. This is due to the fact that most operations deal with
local changes, when adding a site. These local changes are easy to implement with
the implicit coding.

Note that in [SI we used a permutation of the numbering system described above
for SAWS: we used ‘3’ as the dangling end marker, and ‘1’ and ‘2’ for the loop ends.
We have changed notation here for consistency.

The coding of the signatures is actually of vital importance, as the total time and
memory requirements of the algorithm are polynomials in W times the number of
different signatures (Wz for space, and W4 for time), as discussed in section 2.7.

For self-avoiding walks, an upper bound on the number of different signatures is
obvious: qWt2, as there are 4 different possibilities for each bond, and W + 2 possible
bonds. Actually, there are significantly fewer than this since not all combinations are
possible: one cannot have more than two floating ends (as it would be impossible
to make them into a connected walk), and one cannot end a loop with a 3 before
starting it with a 2 It turns out that the number of possible signatures grows like a
polynomial in W times 3w.

For self-avoiding trails, the situation is again worse. The number of possible
boundary conditions can be evaluated exactly in a straight-forward manner. Let B,
be the number of boundary conditions for a strip of width n, and L, the number
of boundary conditions excluding ‘dangling’ paths. That is, all of the n + 2 bonds
on a boundary condition counted in L , must either be unused bonds, or may be
connected to another bond on the boundary. In [SI these were marked by a ‘3’. A
formula for B, in terms of L , is easy to obtain: any boundary counted in B, may
have no dangling ends (giving a term L”), or it may have one dangling end in any
of n + 2 places (giving a term of (n + 2)Ln-1), or it may have two dangling ends
giving a term of (n t 2)(n t l)Lm-2 Thus we have

1540

Now to work on an equation for L,: the first bond may be unoccupied, giving a
term of Ln-l, or it may be connected to one of n f 1 other bonds, giving a term of

A R Conway and A J Guttmann

(n + I)L,,-z, thus

L, = L*-1 t (n t 1)Ln-2. (22)

Initial conditions are L - , = 1, L - , = 1 and L- , = 0.
These are worrying equations as they grow faster than exponentially due to the

(n t 1) Ln-2 term in equation (22). This faster than exponential growth is the reason
why no finite set of symbols could cope with encoding the connections for all values
of w.

Actual values are given in table 1, along with the number s, (taken from 181) of
possible boundary conditions for self-avoiding walks.

'Isbk 1. Number of boundaly conditions for wails (B,) and for shws (5") . Values for
s, mme fmm [8].

0 2 5 5
1 4 13 13
2 10 29 37
3 26 116 106
4 76 292 312
5 232 1310 57.5
6 764 4748 2767
7 z 620 17 848 8314
8 9 4% 70076 25073
9 35696 284252 75791
10 140152 1195240 229495

23. Irreducible components
Using the transfer matrix method directly is not as much of a saving as could be
expected, due to the very large number of vectors. If we want to count all paths up
to a maximum length of 2n t 1, then at lkst it looks as though a square 2n +- 1 wide
is needed to cope with a perfectly vertical path. However, it is possible to use the
symmetry relation between the horizontal and vertical axes, so that only paths up to
a width of n need to be calculated: for paths of width n f 1 or greater, we can say
that they must have height n or less, and thus their mirror images will have already
been counted. More formally, if G j j is the number of paths with i horizontal and j
vertical steps, then Gij = Gji and thus if we know Gij for i < 2n f 1 and j < n,
we really know Gij for all i + j < 2n t 1. That is, we know the total number of
paths of length up to 2n t 1 steps. This means that we could work with strips of
width n, length 2n t 1 and obtain coefficients up to and including 2n + 1.

There is still a further improvement Suppose that we break up all the paths (of
vertical steps < n = 2M t 1) into two classes, irreducible and reducible.

Irreducible paths have no place where a horizontal line could be drawn across the
lattice intersecting exactly one vertical bond. As there are a maximum of 2 M + 1
vertical bonds in the path, and there must be at least two vertical bonds for each unit

Enumeration of se[f-nvoiding trails 1541

of width (to satisfy the irreducibility definition), these paths must all fit into a strip
of width M bonds.

Reducible paths have at least one place where the horizontal line can be drawn,
intersecting just one bond of the path. These paths have the Nce properry that the
self-avoiding constraint will act independently both above and below this line. All
that is needed is to calculate the number of self-avoiding paths above and below
independently. This is a smaller problem, and indeed, can be further split up, until
the entire path can be considered to be made up of an irreducible ’top’ section,
then one or more sections composed of a vertical bond and an irreducible ‘middle’
section, then finally a vertical bond and an irreducible ‘bottom’ section. As all of
these irreducible subsections will have fewer than n steps, they will fit into a strip of
width M.

All in all, these two optimizations allow calculations on a strip of width M bonds
to provide the number of paths with widths up to n = 2M + 1 and thus paths with
total number of bonds up to 2 n + l = 46f+3. Since the number of partial generating
functions rises exponentially with strip width, these two optimizations reduce the
complexity of the problem enormously.

However, it makes the counting task a little more difficult: we have to extract these
‘top’, ‘middle’ and ‘bottom’ sections individually. TO facilitate this, the irreducible
paths can be named as described in table 2, based upon their starting and end points.
Note that a distinction is made here between paths and routes. A p t h has a specific
starting pint: a route does not. This means that there are exactly half as many routes

Note that mutes with two bottom ends are not included, as they are the same (in
number and shape) as R, and similarly routes with one bottom end and one middle
end are not given a name as they are covered by S. Note that all the routes above
are irreducible.

The name in this table is the name of the generating functions associated with
that variable in this paper. There are six generating functions associated with each
letter in this paper, as per the following pattern:

0 Q(u ,w) is the generating function for irreducible routes of the required shape
with the power of U giving the number of horizontal bonds, and w representing
vertical bonds.
QW(u,w) is the same, except only for those irreducible routes of width exactly
W .
Q*(u, w) is the generating function for all (i.e. both reducible and irreducible)
mutes of the required shape.
&tV(u,w) is the same, except for all mutes with width exactly W’.
Q(u, w,z) is the generating function for irreducible mutes of the required shape
with the power of U giving the number of horizontal bonds, w representing vertical
bonds, and z the total width.
& ‘ (U , w, z) is the generating function for all routes of the required shape with
the power of U giving the number of horizontal bonds, w representing vertical
bonds, and z the total width.

as paths.

Note that the same terminology applies to variables other than Q, with mutes
changed to paths where appropriate. The three variable generating function is
the most general: the width W generating functions can be extracted from the
appropriate p w e r of z , and the generating functions in two variables can be produced

1542 A R Conway and A J Guttmann

TEbk 2 Irreducible paths described by heir staning and end p i n k

Dercrption Picture Name Lowest power in U*

for width M

Path with no venial bonds o--o--o P NIA

Route with two middle ends WJ2M

Route with two lop ends WZM

Route with one top. one middle end wZM+l

Route with one lop, one bottom end WSM

from the functions in three variables by setting z = 1. That is

Note that if a path is on a strip the width of which is too small for the definition
to make sense, then the corresponding generating function is zero: Le. Q,, Q,, R,,
S,, S,, and T, are all zero.

Of these five functions, P is easy to determine. .There is one horizontal path of
length zero, and two paths of every other length (one in each direction). Thus

1 t u
1 - U

P (~ , ~ , ~) = 1 + 2u t 2 d +2u3 + ... = -.
Now define another variable, X. This will represent the total number of

irreducible middle sections. That is, the number of ways of going from a point at the
bottom of an irreducible section to a point on the top. Note that every element of
T can be considered as a path restricted so as to not go below the startingpoht. Thus,
T copes with all the parts of X of width at least one. For the zero width case, we
just want paths from one point on a line to another point P, thus

X = T + P .

Enumeration of se[f-avoiding trails 1543

This is the reason for defining P to be paths, whilst &, R, S, and T are routes.
This is a typical X

and this is the corresponding WZX

X refers to just a single irreducible middle section. This can be extended to an
arbitrary middle section by noting that a ‘middle section’ can be formed from either
a vertical bond (wz), or two vertical bonds with an X in between, (W Z X W Z) , or
any number of extra W Z X terms. Define a new variable I’ to be a total (reducible)
‘middle section’, then

(23)
W Z v = wz (1 + W Z X + (W Z X) Z + (W Z X) 3 + . ..) = -

A V can be considered to be a generalization of a vertical bond: it is a reducible
path without either the top or bottom irreducible components. A typical element Of
V is shown below. The arrows indicate that the V is intended to be used as part Of
a path, not as something in its own right.

Note that the top and bottom of a V are always vertical bonds, so a V can attach
to my irreducible component which has an end at its top or bottom. This can be a
P, an R, an S or a T. Note that the R has two ends to which connections can be
made, so we must count it twice. P is not counted twice since it is a path, not a
route. Define the generating function of end components, E as

E = P+2R+ S+ T.

Now all the reducible routes can be calculated. Each consists of one end piece,
E, a joint V and another end piece E. Thus reducible routes are EVE. Irreducible
routes (with some vertical component, Le. not P) are & + 2R + 2 s + T. R and S
are counted twice to allow for routes with two bottom ends or one bottom and one

1544

middle end respectively. 'RI get the total number of paths then, we take the number
of paths with no vertical component, P, and add in twice the number of routes with
vertical components. This gives

A R Conway and A J Guttmann

C = P + 2(Q t 2 R + 25 + T t E V E)

as the total number of paths.
This is a typical reducible path, made up from a TI'P

where the V in this m e is wzPwzTwz.

24. Obtaining the irreducible componenrJ

So far only P(u,w,r) is hown In order to calculate the number of self-avoiding
paths up to length 4M+3, Q(u ,w) , R(u,w), S (U , W) and T(u,w) must be lmown
accurate to u4Mt3 and to wZMtl.

Suppose that it were possible to obtain the starred polynomials Q', R', Sa and
T' as functions of three variables. Then R = R', as all paths starting from the top
and ending at the top are irreducible.

Calculating the others is a little more dimcult. Consider the generalization of X
to X'. X' will be equal to the sum of the irreducible parts X , plus reducible paths
starting at the bottom and ending at the top. These are expressible as X V X , so we
have X' = X + X V X . Using equation (2.3), this can be inverted to give

X'
1 + WZX' X =

which can be expanded in a formal binomial series to give

x = X' (1 - WZX' t WZZZX'~ - . , .) .

If X" is hown to some order in U and w for powers up to r M , then X can be
determined to the same order. Since X is made up of P (which is zero for widths
other than O), and T, which has the lowest power of w being three times the power
of z , order is preserved up to w3M+2 and to the original order in U. Thus, if X u is
hown to u ~ ~ + ~ and d'+*, this is preserved in the calculation of X . So, by using
the third variable, one can go from X' to X , and thence T. Without using the third
variable z, the generating function X' would only be correct to terms of order w M
rather than wZMt1.

Enumeration of self-avoiding trails 1545

Similarly, if we define Y = 2R+ S (connections at the bottom, but not the top),
then Y' = 2R* t S' = 2R + S + XVY = Y(1 + XV), so there is an expression
for Y similar to equation (2.4)

Y'
1 + XV' Y =

One can then obtain Y and thence S from Y' and hence S', in a manner similar
to that used to obtain T from T' via X and X'.

Lastly, Q' = Q + YVY so
Q = Q* -YVY

and Q can also be obtained in a similar manner.

components given the full three variable information, and accuracy to

2 M + l i n W
4 M + 3 i n u .

2.5. Obtaining reducible components

Suppose that we could count all the paths on a certain finite lattice with constraints
upon where the paths can start or end. Define the generating function in variables
U to order 4M + 3 and w to order 2M + 1 for paths on a strip of width h' as
GK(a , b, c) , where a, b, and c are + or - depending upon whether one can start or
end paths on the top of the strip, the bottom of the strip, and/or the middle of the
strip respectively. Ensure that all paths included in these generating functions start
flush at the left of the lattice so that we do not need to worry about uniqueness in
the horizontal direction.

Now, by considering how the walks that fit into the strip can be made
up of the reducible functions defined above, the latter can be defined as an
invertible linear combination of the former, One inverts this relation and gets the
reducible components needed in section 2.4 from the G K (+ , - , -) , G,(+,+,-),
GK(-,-,+) and G,(+,-,+), for K from 0 to M.

This means that all the irreducible components can be obtained from reducible

M in z (i.e. to width M)

These relations are (as taken from [SI)

R, = Gm(+,-,-) - G,,-I(+~-,-)

Q',=G,(-,-,+)-G,-,(+,-,+)- x (Q ' , + R , + S L)

Sk = G,(+,-,+)- Gm-~(+,-,+)-Gm(+,-,-)-Gm-i(+,-,-)
m-l

m-1

n=l

1 - ~ (p - 1) - Q', - (Wn + I * S: t 7'')
n=l

TA = G , (+ , t , -) - 2Gm(+,-,-).

1546

26. Countingpalhs on strips

The transfer matrix technique can be used to obtain the generating functions G,
that are needed in section 2.5.

Suppose we are working on a lattice of width W and length 4Wt3. As mentioned
before, one starts with one partial generating function (boundary to the left of the
entire lattice, no bonds used, generating function 1). Then add on sites as described
in the next paragraph one at a time, working along the matrix column by column.
At each site one stores for each valid signature the partial generating function. After
processing the first column, one can remove the signature with no bonds occupied, as
any animal based upon this signature will not lie flush against the left of the lattice,
and by removing it we satisfy the horizontal uniqueness criterion.

'RI process a site, one cycles through all the stored signatures, processing each
individually, creating a new set of signatures. Note that two or more signatures
may produce the same signature after processing. In this case the partial generating
functions for these two signatures should be added.

All that is left is to describe exactly what to do when each site is added for a
particular signature. The site that is being added will have two bonds coming in (to
the left of the new boundary), and another hvo bonds leaving (to the right).

One must lirstly see if the walk can be finished at this point, and if so, add in
the partial generating function to a total generating function which will give the final
G, once all sites have been processed. In order to be able to accumulate a partial
walk, two conditions must be satisfied. Firstly, there must be no occupied bonds in
the signature other than those coming into the bond being processed. Secondly, one
of the three following conditions must hold

There must be a single dangling end coming in to the site being processed (type
'1' in the signature coding), and it is valid to start or stop a path at this point
(determined by the + or - parameters in the particular G, being computed.
Or there may be two dangling ends that connect at this site.
Or (only in the case of trails) there may be a loop completed at this site and it is
valid to start or stop a path at this point.

We will first discuss the possibilities for the new signatures if one cannot Start or
stop a path at the site being processed.

If one is counting walks, and there is only one bond going into the site, then
that one bond must emerge from either of the two bonds coming out of the site.
This gives two new signatures, one with the old generating function multiplied by
w (emerging vertically), and one with the old generating function multiplied by U

(emerging horizontally). In future we will not mention these multiplications.
Again for walks, one may have both bonds entering the site occupied. In this case

neither output bond may be occupied, as one cannot have more than two occupied
bonds touching a site for self-avoiding walks. What happens depends upon the
specific case. If the two bonds are attached together, then a loop has been formed
which is illegal, so no signatures are generated. If the two bonds are dangling ends,
then attaching them would make an entire dangling path, which is not allowed. In
the remaining cases, one does produce a new valid signature, and one must adjust
the coding for the bond@) in the signature to which the just processed bonds were

A R Conway and A .I Guttmann

attached.
Again for walks, if there are no bonds coming in, then there are two possibilities:

Enumeration of se[f-avoiding trails 1547

no bonds coming out, or a new path being started at this point-that is two bonds
coming out and connected to each other.

Further possibilities exist if one can stop or start from the site being processed.
For walks with no bonds coming in, one can now have one dangling end coming

out of either of the two outgoing bonds. With one bond coming in which is not a
dangling bond, the pathlet it belongs to can be terminated at this site, and the bond
to which it is attached elsewhere in the signature becomes a dangling bond. Note
that each of these steps increases the number of dangling bonds in the signature, and
one must check that the total number of dangling bonds does not exceed two, as this
would mean that any path one tries to construct must have at least three ends!

These are summarized in table 2 of 181.
For trails, the situation is significantly more complicated, as bond loops and

First, consider what can be done without starting or stopping.
The same possibilities as in the walks case (without stopping or starting at the

site being processed) hold, with some extra possibilities when there are two bonds
coming in. Firstly, both bonds could ‘bounce’ and come out as two bonds with the
same connections. Secondly, they could cross, and come out as two bonds with
interchanged connections. Thirdly, if the two bonds coming in meet, and in the
walks case would have produced no bonds coming out, one may also have two new
WMected bonds coming out, as occurred in the walks case when no bonds went in.

If one is allowed to start or stop at the site being processed, things get much
more complicated. The actions can best be described by two stages.

In the first stage, associated with terminating incoming pathlets, one forms all the
possibilities already described, and adds in the following possibilities:

e For one bond entering which is not an dangling end, the pathlet may be terminated
at this site, and the other end of the pathlet converted to a dangling end (as was
done for walks). No occupied bonds emerge.

e For two bonds entering, one a dangling end, and the other a pathlet, the pathlet
may terminate (making the other end of the pathlet a dangling bond) and the
dangling end can continue from either of the two new bonds.
For two ends of the same pathlet entering, one end may terminate at the current
site, and the other end (now a dangling end) may take either of the two new
bonds. As either end of the pathlet may terminate, there are four new signatures
produced.
For two ends of different pathlets entering, there are the same four possibilities
as above, except that this time it is a pathlet leaving, not a dangling end, and
some other bond in the signature will become a dangling end. A iifth possibility is
for both incoming pathlets to terminate, producing two dangling ends elsewhere
in the signature and no bonds coming out.

In the first and last case above, there is the possibility of no bonds coming out. Again,
one can add a new two bond loop in both cases as in the walks case when no bonds
went in.

The second stage is associated with adding dangling ends at the leaving stage. If
any of the signatures formed from the first stage have either or both of the outgoing
bonds unoccupied, either or both may be filled with dangling ends.

Of course, when forming new dangling ends, one must remember the constraint
that the total number of dangling ends in the signature may not exceed two.

crossings are allowed, but the basic idea remains the same.

1548 A R Conway and A J Guttmann

2% Algonihm compleriy

One now has all the ingredients for the algorithm. One uses the transfer matrix
technique to get all the G, terms for K going up to some value U' (section 26), then
obtain the reducible generating functions (section 25) and thus obtain the irreducible
generating functions and final answer (section 24).

Of these three stages, the fmt (section 26) is exceedingly time and memory
consuming, whilst the second (section 2 4 5) is fast (polynomial in W time) and uses
little memory.

Since the first stage is the bottleneck, we shall discuss it exclusively in terms of
complexity.

The total memory required will be bounded by the number of possible boundary
conditions, multiplied by the total space per generating function (proportional to
W'), multiplied by two, since one may need to store both the incoming and outgoing
partial generating function. In practice, this last factor is nowhere near as high as
two, since as soon as a signature has been fully processed, the data associated with it
may be discarded.

The total time required is proportional to the total amount of memory that needs
to be processed (as above) times the number of sites that have to be processed
(proportional to Wz), times the average number of new signatures per old signature.
This last factor is pretty much independent of W. For trails it is significantly larger
than walks.

The basic result is that the time and memory requirements are a small polynomial
times the number of boundary conditions. The number of boundary conditions is
therefore the most significant factor in the complexity of this algorithm.

For self-avoiding walks, the number of boundary mnditions grows like a
polynomial in W times 3". Thus the dominant complexity of this method for
self-avoiding walks is 3"14, where n is the number of steps required. This coma
from the fact that n = 4 W + 3. The alternative, direct enumeration, grows like An,
where X is the connective constant for self-avoiding walks. Note that X is significantly
greater than 3'i4 (approximately twice 3Il4 in fact), so this algorithm is exponentially
faster than direct enumeration.

For trails, the situation is not as good. The analysis in section 2.2 shows that the
number of boundary conditions grows faster than exponentially. Thus, for very long
trails, direct enumeration will be a more efficient algorithm! However, consulting
table 1 shows that Wails are not all that much worse than walks for small values of
W. So for smaU values of U', this transfer matrix method is actually more efficient
than direct enumeration. Fortunately, the values of W for which this algorithm is
faster than directed enumeration are such that this algorithm is faster for n at least
50, which is far beyond the capacity of current computers.

This algorithm is also amenable to parallelization in the Same manner as the
self-avoiding walk algorithm described in [SI.

This algorithm was implemented in a C program using modular arithmetic, and
was used to obtain trails of up to 31 steps. They are given in table 3.

3. Analysis of series

The method of analysis used is based on first- and second-order differential
approximants. It was used in previous papers [8,9,10] in which the related SAW

Enumeration 4 self-avoiding trails 1549

Tpbk 3. Numbers of mils t, of n steps.

n
0
I
2
3
4
5
6
7
8
9

- t ,
1
4
12
36
108
316
916

2 628
I500
21 268

n
10
11
12
I3
14
15
16
17
18
19
20

- t ,
60092
169 092
474 924

1 329 188
3115244
10 359 616
28 856 252

222 841 804
618 083 9l2

1713 283 628

a0220244

R -
21
22
23
24
2.5
26
21
28 29

30
31

tn

4742946484
13123882524
36214940140
tw 226 653 420
276669052116
763 482 430 316

2105208491 748

15986 580 203469
44 028 855 864 492

5ao3 285 97724

121 181 822 490 084

problem was studied, and is described in detail in [Ill. In summary, we construct
neardiagonal inhomogeneous differential approximants, with the degree of the
inhomogeneous polynomial increasing from one to eight in steps of one. For Iirst-
order approximants (IC = I), twelve approximants are constructed that utilize a
given number of series coefficients, N . Rejecting occasional defective approximants,
we form the mean of the estimates of the critical point and critical exponent for fixed
order of the series, N . The error is assumed to be kvo standard deviations. A simple
statistical procedure combines the estimates for different values of N by weighting
them according to the error, with the estimate with the smallest error having the
greatest weight. As the error tends to decrease with the number of terms used in the
approximant, this procedure effectively weights approximants derived from a larger
number of terms more heavily.

For second-order approximants (IC = 2), eight distinct approximants are
mnsmcted for each value of N . We find that as the number of series terms
increases, the estimate of the critical exponent decreases. We show below that this is
due to rather strong correction-toscaling terms, much stronger than for the SAW case.
Because of this, the estimates we quote below should be treated as over-estimates of
the exponent and critical point

z, = 0.367597 i 0.00002 y = 1.352 & 0.01 (Ji = 1)
z, = 0.3676 & O.ooO1 = 1.348 f 0.008 (IC = 2).

These results provide some support for the view that the trails are in the SAW
universality class. The critical p int estimate can be refined if we assume that
y = 1.34375 exactly, which is the SAW value. 'Ib refine the estimate of the critical
point, linear regression is used. There is a strong correlation between estimates of
the critical point and critical exponent. This is quantified by linear regression, and in
this way the biased estimates (biased at y = 43/32) are obtained.

We find

x, = 0.367564fO.C"S

zc = 0.367562 f 0.000007

(A' = 1)
(IC = 2).

These are combined to give our best estimate for the connective constant
X = l /xc = 2.72062 i O.ooOo6, which is in agreement with previous estimates,
but rather more accurate than any previous estimate.

1550 A R Conway and A J Guttmann

The much slower rate of convergence of the trails series critical point estimates
compared to the corresponding SAW estimates is presumably due to stronger
‘correction-to-scalig’ terms. We have investigated this possibility using three different
methods. Firstly, we used the method of Baker and Hunter [12] which transforms
the series so that poles of the Pad6 approximants to the transformed series furnish
estimates of the reciprocals of the exponents. However we found that the singularity
on the negative real axis at -zc masked the presence of any confluent singularity at
zc. Accordingly, we split the series in two, treating the odd and even subsequences as
independent series. In this way, we found exponents with the =lues ES 1.35 and w 1.0
from the even sub-sequence. The smaller exponent was not well identified however.
This implies a correction-to-scaling exponent of ES 0.35. The odd subsequence gave
no evidence of any exponent apart from the leading one.

The next method we used was the method of Adler et a1 [13], in which a
correction-to-scaling exponent is assumed, and then a transformation is applied which
maps this non-analytic correction term to an analytic correction term. Pad6 analysis
of the transformed series should then give the correct leading exponent We tried
various values of the correction-to-scaling exponent, and found that a value around
0.75 resulted in a series which gave the correct critical exponent of y = 1.34375.

The third method is the same as that used in our recent study of SAWS [SI. In that
method we mwme the correction-to-scaling exponent, and fit the series coefficients
to the assumed form. The fit is judged reasonable if the sequences of amplitude
estimates appear to converge well. This is not a particularly sensitive method, but
is useful in that it does provide amplitude estimates as well. From the two wlues
of the correction-to-scaling exponent found above, we Wicd an intermediate value
of 0.5. Given that the SAW exponent appears to be 1.5, this seemed a reasonable
thing to try. As well as the correction-to-scaling term, there is another singularity
on the negative real axis. For SAWS, Guttmann and Whittington [14] showed that
this was at I = -zc. That proof applies mutatis mulandis to trails. We assume that
universality of exponents applies to non-physical singularities also-a result supported
by our series analysis. Then the singularity on the negative real axis will also have
the same exponent as the energy at the physical singularity-as for SAws-and so we
expect the generating function for trails to behave like

T(r) = Ct,z“ - A (r) (1-Xz) -43’32[l+B(2) (1 -~~)~+~ , .]+D(s)(~ + X Z) + ” ~ .

The exponent for the singularity on the negative real axis refiects the fact that,
as noted above, that term is expected to behave as the energy, and hence to have
exponent 1 - a, where a = $. From the above, it follows that the asymptotic form
of the coefficients, e,, behaves like

tn Xn[aln11/32 + bln”/32-A + (- l) n d 1 n - 3 / 2] . (34
The three amplitudes, q, b,, d, come from the leading singularity, the correction-

to-scaling term and the term on the negative real axis respectively. A small program
written in Mathematica was used to fit successive triples of coefficients, c,-~, c,-,
and cn for n = 6,7,8,. . . ,31. The results (with A = 4) are shown in table 4.

At first sight, these appear to be converging rather well. Closer inspection reveals
that the sequences have a turning point at around n = 29. We next tried a higher
value of A, choosing A = 0.75 in agreement with the prediction of the transformation
method of Adler el al cited above. The results are shown in table 5.

Enumeration of sey-avoiding trails 1.551

Tabk 4. Sequences of amplitude estimates assuming A = 1.. Refer to equation (3.1).

n

21
22
23
24
25
26
27
28
29
30
31

- di
0.0289
0.0309

0.0311

-

a0296

amo6
0.0313
0.0310
0.0314
0.0315
0.0316
0.0319

b t a1

-0.18M 1.2795
-0.1833 1.2801
-0.1849 1.2805
-0.1868 1.2809

-0.1885 1.2812
-ai874 1.2810

-ai889 1.2813
-ai894 1.2814
-ai893 1.2814
-ai894 1.2814
-0.1890 1.2813

Tabk 5. Sequences of amplitude estimates assuming A = $. Refer to equation (3.1).

n dl b1 a1

21 aom - 0 . 2 5 ~ 1.2661
U 0.0316 -0.2615 1.2668
23 a0289 -0.2670 1.2673
24 0.0318 -0.2727 ~ 2 6 7 9
zs 0.02~ -0.2765 1.2683
26 0.0321 -azo9 1.2687
27 0.0303 -0.2878 1.2690
28 0.0321 -0.2902 1.2692
29 0.0309 -0.2902 13695
30 0.0323 -0.2930 1.2697
31 0.0313 -0.2949 1.2698

These sequences of amplitudes appear fo be converging reasonably well, and
support the earlier finding that the correction-to-scaling exponent is around 0.75. If
this is correct, we can extrapolate the above sequences and find at = 1.272 & 0.002,
b, = -0.322~0.02 and d, = 0.035~k0.004. Even if the correction-to-scaling exponent
were not as estimated, the leading amplitude is still likely to be within the quoted
range.

Acknowledgments

We would like to thank Ian G Enting for introducing us to the finite lattice method.
One of us (ARC) would like to thank the A 0 Capell, Yselaskie and Daniel Curdie
scholarships. The other (AJG) would like to thank the ARC for financial support.

References

[I] Mslakis A 1975 1 Phys. A: MaIh Gm 8 1985
p] Guttmann A J 1985 1 Phys. A: M01k Gm 18 567-73
131 Guttmann A J 1985 1 Phys~ A: Math. Gm 18 575-88
[4] Hammersley J 1957 Froc Cod. Phil Soc. 55 642
[S] Guttmann A J and Osborn T R 1988 1 Phys. rL. Math Gol. 21 SE-17
[6] Bemetti A and Sokal A D 1985 1 SIUL Phys 40 483

1552 A R Conway and A J Guttmann

[q Lim n A and ~eimvilch n 1991 mys. RCU A 39 4176-85
[s] Conway A R, Enting I G and Guttmann A J 1993 I . Phy& A: MaIh Gm 26 1519-34
[9] Guttmann A J 1987 J. Php A: Math Gar 20 1839-54

[lo] Guttmsnn A J and Jim %ng 1991 J: Phys A: Moth Gm 24 3107-9
[l l] Guttmann A J 1989 Phax i%"fons lstd C n h l Phenmma MI 13, ed C Domb and J Lebowitz

[12] Hunter D L and Baker G A Jr I979 e s . Rm B 19 3808
[13] Adler J, Moshe M, and Privman V 1981 X Phys. A. Moth Gar 14 I363
[14] GuUmann A J and Wittington S G 1978 X Phyx A: Ma:h Gar 11 721-9
[15] Hammersley J M and %ish D J A 1962 e I. M n h Oxford Series 2 U 108

(New York Academic)

